Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Hortic Res ; 11(4): uhae039, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38623074

RESUMEN

Chrysanthemum × morifolium has great ornamental and economic value on account of its exquisite capitulum. However, previous studies have mainly focused on the corolla morphology of the capitulum. Such an approach cannot explain the variable inflorescence architecture of the chrysanthemum. Previous research from our group has shown that NO APICAL MERISTEM (ClNAM) is likely to function as a hub gene in capitulum architecture in the early development stage. In the present study, ClNAM was used to investigate the function of these boundary genes in the capitulum architecture of Chrysanthemum lavandulifolium, a closely related species of C. × morifolium in the genus. Modification of ClNAM in C. lavandulifolium resulted in an advanced initiation of the floral primordium at the capitulum. As a result, the receptacle morphology was altered and the number of florets decreased. The ray floret corolla was shortened, but the disc floret was elongated. The number of capitula increased significantly, arranged in more densely compounded corymbose synflorescences. The yeast and luciferase reporter system revealed that ClAP1, ClRCD2, and ClLBD18 target and activate ClNAM. Subsequently, ClNAM targets and activates ClCUC2a/c, which regulates the initiation of floral and inflorescence in C. lavandulifolium. ClNAM was also targeted and cleaved by cla-miR164 in this process. In conclusion, this study established a boundary gene regulatory network with cla-miR164-ClNAM as the hub. This network not only influences the architecture of capitulum, but also affects compound corymbose synflorescences of the C. lavandulifolium. These results provide new insights into the mechanisms regulating inflorescence architecture in chrysanthemum.

2.
Clin Transl Sci ; 17(4): e13787, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38558535

RESUMEN

The purpose of this study was to evaluate the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of frunexian (formerly known as EP-7041 and HSK36273) injection, a small molecule inhibitor of activated coagulation factor XI (FXIa), in healthy Chinese adult volunteers. This study was a randomized, placebo- and positive-controlled, sequential, ascending-dose (0.3/0.6/1.0/1.5/2.25 mg/kg/h) study of 5-day continuous intravenous infusions of frunexian. Frunexian administration exhibited an acceptable safety profile with no bleeding events. Steady state was rapidly reached with a median time ranging from 1.02 to 1.50 h. The mean half-life ranged from 1.15 to 1.43 h. Frunexian plasma concentration at a steady state and area under the concentration-time curve exhibited dose-proportional increases. The dose-escalation study of frunexian demonstrated its progressively enhanced capacities to prolong activated partial thromboplastin time (aPTT) and inhibit FXIa activity. The correlations between PK and PD biomarkers (aPTT/baseline and FXI clotting activity/baseline) were described by the two Emax models, with the EC50 values of 8940 and 1300 ng/mL, respectively. Frunexian exhibits good safety and PK/PD properties, suggesting it is a promising candidate for anticoagulant drug.


Asunto(s)
Anticoagulantes , Coagulación Sanguínea , Adulto , Humanos , Tiempo de Tromboplastina Parcial , Voluntarios Sanos , China , Método Doble Ciego , Relación Dosis-Respuesta a Droga
3.
Sci Rep ; 14(1): 9461, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658587

RESUMEN

Average windward area is an important index for calculating the trajectory, velocity attenuation and terminal effect of explosive fragments. In order to solve the problems that existing theoretical method cannot calculate windward area of irregular fragment and experiment method is not convenient for automatic calculation and has low accuracy, a Monte Carlo subdivision projection simulation algorithm is proposed. The average windward area of arbitrary shaped fragments can be obtained with coordinate translation, random rotation, plane projection, convex-hull triangulation, concave boundary searching and sorting with maximum edge length constraint, subdivision area calculation, and averaging by thousands of cycles. Results show that projection area obtained by the subdivision projection algorithm is basically the same as that obtained by software method of computer aided design. Moreover, the maximum calculation error of the algorithm is less than 7%, and its accuracy is much higher than that of the equivalent ellipsoid method. The average windward area calculated by the Monte Carlo subdivision projection simulation algorithm is consistent with theoretical formula for prefabricated fragments, and the error is less than 3%. The convergence and accuracy of the Monte Carlo subdivision projection algorithm are better than those of the icosahedral uniform orientation method.

4.
Langmuir ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38666366

RESUMEN

Nitrous oxide (N2O), recognized as a significant greenhouse gas, has received insufficient research attention in the past. In view of their low energy consumption and cost-effectiveness, the application of porous materials in adsorption is increasingly regarded as a potent strategy to reduce N2O pollution. In this study, a series of microporous porous carbons with a preeminent specific surface area (244.54-2018.08 m2 g-1), which are derived from the fast-growing eucalyptus bark, were synthesized by KOH activation at high temperatures. The obtained materials demonstrated a relatively fine N2O capture capability (0.19-0.68 mmol g-1) at normal temperature and pressure. More importantly, the optimal pore size affecting N2O adsorption (0.8 and 1.0 nm) has been detected, which is a meaningful view that has never been put forward in previous studies. The rationality of the N2O adsorption mechanism was also validated by combining the experimental analysis and Grand Canonical Monte Carlo (GCMC) simulation. The calculated results showed that 0.8 and 1.0 nm of the porous carbon were the preferred pore sizes for N2O adsorption, and the interaction force between N2O and the pore wall decreased with the increase of distance. This study provides a significant theoretical basis for the preparation of biomass porous carbon with excellent N2O adsorption performance and practical adsorption application.

5.
PeerJ Comput Sci ; 10: e1688, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38435577

RESUMEN

At present, the reconfiguration, maintenance, and review of power lines play a pivotal role in maintaining the stability of electrical grid operations and ensuring the accuracy of electrical energy measurements. These essential tasks not only guarantee the uninterrupted functioning of the power system, thereby improving the reliability of the electricity supply but also facilitate precise electricity consumption measurement. In view of these considerations, this article endeavors to address the challenges posed by power line restructuring, maintenance, and inspections on the stability of power grid operations and the accuracy of energy metering. To accomplish this goal, this article introduces an enhanced methodology based on the hidden Markov model (HMM) for identifying the topology of distribution substations. This approach involves a thorough analysis of the characteristic topology structures found in low-voltage distribution network (LVDN) substations. A topology identification model is also developed for LVDN substations by leveraging time series data of electricity consumption measurements and adhering to the principles of energy conservation. The HMM is employed to streamline the dimensionality of the electricity consumption data matrix, thereby transforming the topology identification challenge of LVDN substations into a solvable convex optimization problem. Experimental results substantiate the effectiveness of the proposed model, with convergence to minimal error achieved after a mere 50 iterations for long time series data. Notably, the method attains an impressive discriminative accuracy of 0.9 while incurring only a modest increase in computational time, requiring a mere 35.1 milliseconds. By comparison, the full-day data analysis method exhibits the shortest computational time at 16.1 milliseconds but falls short of achieving the desired accuracy level of 0.9. Meanwhile, the sliding time window analysis method achieves the highest accuracy of 0.95 but at the cost of a 50-fold increase in computational time compared to the proposed method. Furthermore, the algorithm reported here excels in terms of energy efficiency (0.89) and load balancing (0.85). In summary, the proposed methodology outperforms alternative approaches across a spectrum of performance metrics. This article delivers valuable insights to the industry by fortifying the stability of power grid operations and elevating the precision of energy metering. The proposed approach serves as an effective solution to the challenges entailed by power line restructuring, maintenance, and inspections.

6.
EMBO Rep ; 25(3): 1055-1074, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38351372

RESUMEN

Activation of hepatic stellate cells (HSCs) plays a critical role in liver fibrosis. However, the molecular basis for HSC activation remains poorly understood. Herein, we demonstrate that primary cilia are present on quiescent HSCs but exhibit a significant loss upon HSC activation which correlates with decreased levels of the ciliary protein intraflagellar transport 88 (IFT88). Ift88-knockout mice are more susceptible to chronic carbon tetrachloride-induced liver fibrosis. Mechanistic studies show that the X-linked inhibitor of apoptosis (XIAP) functions as an E3 ubiquitin ligase for IFT88. Transforming growth factor-ß (TGF-ß), a profibrotic factor, enhances XIAP-mediated ubiquitination of IFT88, promoting its proteasomal degradation. Blocking XIAP-mediated IFT88 degradation ablates TGF-ß-induced HSC activation and liver fibrosis. These findings reveal a previously unrecognized role for ciliary homeostasis in regulating HSC activation and identify the XIAP-IFT88 axis as a potential therapeutic target for liver fibrosis.


Asunto(s)
Cilios , Cirrosis Hepática , Animales , Ratones , Cilios/metabolismo , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Hígado/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Factor de Crecimiento Transformador beta/metabolismo
7.
Nat Commun ; 15(1): 1186, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332033

RESUMEN

In-situ wastewater treatment has gained popularity due to cost and energy savings tailored to water sources and user needs. However, this treatment, particularly through advanced oxidation processes (AOPs), poses ecological risks due to the need for strong oxidizing agents. Here, we present a decoupled oxidation process (DOP) using single-atom copper-modified graphite felt electrodes. This process creates a positive potential difference (ΔE ~ 0.5 V) between spatially isolated oxidants and organics and drives electron transfer-based redox reactions. The approach avoids the drawbacks of conventional AOPs, while being capable of treating various recalcitrant electron-rich organics. A floating water treatment device designed based on the DOP approach can degrade organic molecules in large bodies of water with oxidants stored separately in the device. We demonstrate that over 200 L of contaminated water can be treated with a floating device containing only 40 mL of oxidant (10 mM peroxysulphate). The modular device can be used in tandem structures on demand, maximizing water remediation per unit area. Our result provides a promising, eco-friendly method for in-situ water treatment that is unattainable with existing techniques.

8.
Acta Pharmacol Sin ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38286832

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with progressive loss of motor neurons in the spinal cord, cerebral cortex and brain stem. ALS is characterized by gradual muscle atrophy and dyskinesia. The limited knowledge on the pathology of ALS has impeded the development of therapeutics for the disease. Previous studies have shown that autophagy and astrocyte-mediated neuroinflammation are involved in the pathogenesis of ALS, while 5HTR2A participates in the early stage of astrocyte activation, and 5HTR2A antagonism may suppress astrocyte activation. In this study, we evaluated the therapeutic effects of desloratadine (DLT), a selective 5HTR2A antagonist, in human SOD1G93A (hSOD1G93A) ALS model mice, and elucidated the underlying mechanisms. HSOD1G93A mice were administered DLT (20 mg·kg-1·d-1, i.g.) from the age of 8 weeks for 10 weeks or until death. ALS onset time and lifespan were determined using rotarod and righting reflex tests, respectively. We found that astrocyte activation accompanying with serotonin receptor 2 A (5HTR2A) upregulation in the spinal cord was tightly associated with ALS-like pathology, which was effectively attenuated by DLT administration. We showed that DLT administration significantly delayed ALS symptom onset time, prolonged lifespan and ameliorated movement disorders, gastrocnemius injury and spinal motor neuronal loss in hSOD1G93A mice. Spinal cord-specific knockdown of 5HTR2A by intrathecal injection of adeno-associated virus9 (AAV9)-si-5Htr2a also ameliorated ALS pathology in hSOD1G93A mice, and occluded the therapeutic effects of DLT administration. Furthermore, we demonstrated that DLT administration promoted autophagy to reduce mutant hSOD1 levels through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocyte neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice. In summary, 5HTR2A antagonism shows promise as a therapeutic strategy for ALS, highlighting the potential of DLT in the treatment of the disease. DLT as a 5HTR2A antagonist effectively promoted autophagy to reduce mutant hSOD1 level through 5HTR2A/cAMP/AMPK pathway, suppressed oxidative stress through 5HTR2A/cAMP/AMPK/Nrf2-HO-1/NQO-1 pathway, and inhibited astrocytic neuroinflammation through 5HTR2A/cAMP/AMPK/NF-κB/NLRP3 pathway in the spinal cord of hSOD1G93A mice.

9.
Blood Press Monit ; 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38193368

RESUMEN

To evaluate the accuracy of the DBP-1333b upper-arm blood pressure (BP) measuring device in the adult population according to the AAMI/ESH/ISO universal standard (ISO 81060-2:2018+Amd.1:2020). Subjects were recruited in the adult population. The test device was an arm-type electronic sphygmomanometer (DBP-1333b) and the reference device was a desktop sphygmomanometer (XJ11D). Using the BP data measured by the desktop sphygmomanometer as reference BP, the accuracy of the non-invasive BP module of the test device was evaluated to determine whether it met the requirements. Data from 90 individuals were analysed. According to Criterion 1, the mean difference of SBP between the test and reference device was 0.19 mmHg and the SD was 7.45 mmHg. The mean difference of DBP was -0.59 mmHg and the SD was 6.47 mmHg. The mean difference of both SBP and DBP was less than 5 mmHg, and the SD was less than 8 mmHg, which met the requirements. According to Criterion 2, SD of SBP was 5.79 mmHg, which was less than 6.95 mmHg and met the requirements. The SD of DBP was 5.58 mmHg, which was less than 6.93 mmHg and met the requirements. It was concluded that the DBP-1333b complies with the AAMI/ESH/ISO universal standard (ISO 81060-2:2018+Amd.1:2020) and can be recommended for use by the adults.

10.
Medicine (Baltimore) ; 103(1): e36867, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38181239

RESUMEN

We performed a bidirectional 2-sample Mendelian randomization (MR) design to explore the causal relation between telomere length (TL) and colorectal polyps. Genome-wide association study summary data of TL and colorectal polyps were extracted from the IEU open genome-wide association study database. Single nucleotide polymorphisms were served as instrumental variables at the significance threshold of P < 5 × 10-8. The inverse variance weighted method, MR-Egger method, and weight median method were performed for causal estimation in MR. Cochran Q test, MR-Egger intercept test, and leave-one-out analyses were performed to evaluate the pleiotropy of the MR results. One hundred and twenty-four single nucleotide polymorphisms were selected as instrumental variables. We found significant casual association between TL and colorectal polyps. Long TL increased the risk of colorectal polyps using the inverse variance weighted method [ukb-a-521: odds ratio (OR): 1.004, 95% confidence interval (CI): 1.001-1.007, P = .004; ukb-d-D12: OR: 1.008, CI: 1.004-1.012, P < .001; finn-b-CD2_BENIGN_COLORECANI_EXALLC2: OR: 1.170, CI: 1.027-1.332, P = .018]. Sensitivity analyses validated that the causality between TL and colorectal polyps was robust. The study provided a causal association between TL and colorectal polyps which indicated that TL might be served as a potential biomarker of colorectal polyps for screening and prevention. Nonetheless, the conclusions need further validation.


Asunto(s)
Pólipos del Colon , Humanos , Pólipos del Colon/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Causalidad , Telómero
11.
Foods ; 13(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38254524

RESUMEN

Research on silicon (Si), an element considered beneficial for plant growth, has focused on abiotic and biotic stress mitigation. However, the effect of Si on tomato fruit quality under normal growth conditions remains unclear. This study investigated the effects of applying different levels of Si (0 mmol·L-1 [CK], 0.6 mmol·L-1 [T1], 1.2 mmol·L-1 [T2], and 1.8 mmol·L-1 [T3]) in foliar sprays on tomato fruit quality cultivated in substrates, and the most beneficial Si level was found. Compared to CK, exogenous Si treatments had a positive influence on the appearance and nutritional quality of tomato fruits at the mature green, breaker, and red ripening stages. Of these, T2 treatment significantly increased peel firmness and single-fruit weight in tomato fruits. The contents of soluble sugars, soluble solids, soluble proteins, and vitamin C were significantly higher, and the nitrate content was significantly lower in the T2 treatment than in the CK treatment. Cluster analysis showed that T2 produced results that were significantly different from those of the CK, T1, and T3 treatments. During the red ripening stage, the a* values of fruits in the T2 treatment tomato were significantly higher than those in the other three treatments. Moreover, the lycopene and lutein contents of the T2 treatment increased by 12.90% and 17.14%, respectively, compared to CK. T2 treatment significantly upregulated the relative gene expression levels of the phytoene desaturase gene (PDS), the lycopene ε-cyclase gene (LCY-E), and the zeaxanthin cyclooxygenase gene (ZEP) in the carotenoid key genes. The total amino acid content in tomato fruits in the T2 treatment was also significantly higher than that of CK. In summary, foliar spraying of 1.2 mmol·L-1 exogenous Si was effective in improving the appearance and nutritional quality of tomato fruits under normal growth conditions. This study provides new approaches to further elucidate the application of exogenous silicon to improve tomato fruit quality under normal conditions.

12.
Calcif Tissue Int ; 114(2): 182-199, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38055044

RESUMEN

In hyperlipidemia-induced osteoporosis, bone marrow mesenchymal stem cells (BMSCs) differentiate into more adipocytes than osteoblasts, leading to decreased bone formation. It is vital to elucidate the effects of hyperlipidemia on bone metabolism and seek new agents that regulate adipocyte-osteoblast lineage allocation. CoQ10, a rate-limiting coenzyme of the mitochondrial respiratory chain, has been reported to decrease oxidative stress and lipid peroxidation by functioning as a mitochondrial antioxidant. However, its effect on hyperlipidemia-induced osteoporosis remains unknown. Here, we analyzed the therapeutic mechanisms of CoQ10 on hyperlipidemia-induced osteoporosis by using high-fat diet (HFD)-treated ApoE-/- mice or oxidized low-density lipoprotein (ox-LDL)-treated BMSCs. The serum lipid levels were elevated and bone formation-related markers were decreased in HFD-treated ApoE-/- mice and ox-LDL-treated BMSCs, which could be reversed by CoQ10. Additionally, PGC-1α protein expression was decreased in HFD-treated ApoE-/- mice and ox-LDL-treated BMSCs, accompanied by mitochondrial dysfunction, decreased ATP content and overgeneration of reactive oxygen species (ROS), which could also be antagonized by CoQ10. Furthermore, PGC-1α knockdown in vitro promoted ROS generation, BMSC apoptosis, and adipogenic differentiation while attenuating osteogenic differentiation in BMSCs. Mechanistically, it suggested that the expression of PGC1-α protein was increased with miR-130b-3p inhibitor treatment in osteoporosis under hyperlipidemia conditions to improve mitochondrial function. Collectively, CoQ10 alleviates hyperlipidemia-induced osteoporosis in ApoE-/- mice and regulates adipocyte-osteoblast lineage allocation. The possible underlying mechanism may involve the improvement of mitochondrial function by modulating the miR-130b-3p/PGC-1α pathway.


Asunto(s)
Hiperlipidemias , MicroARNs , Osteoporosis , Ubiquinona/análogos & derivados , Ratones , Animales , Hiperlipidemias/complicaciones , Osteogénesis , Especies Reactivas de Oxígeno/metabolismo , Osteoporosis/prevención & control , Osteoporosis/tratamiento farmacológico , Diferenciación Celular , Mitocondrias/metabolismo , Apolipoproteínas E/farmacología , Apolipoproteínas E/uso terapéutico
13.
Mol Divers ; 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38153637

RESUMEN

A number of new biologically interesting fluorinated 2-arylchroman-4-ones and their 3-arylidene derivatives were synthesized based on the p-toluenesulfonic acid-catalyzed one-pot reaction of 2-hydroxyacetophenones with benzaldehydes. It was found that obtained (E)-3-arylidene-2-aryl-chroman-4-ones reacted with malononitrile under base conditions to form 4,5-diaryl-4H,5H-pyrano[3,2-c]chromenes. The structures of the synthesized fluorinated compounds were confirmed by 1H, 19F, and 13C NMR spectral data, and for some representatives of heterocycles also using NOESY spectra and X-ray diffraction analysis. A large series of obtained flavanone derivatives as well as products of their modification (35 examples) containing from 1 to 12 fluorine atoms in the structure was tested in vitro for cytotoxicity in MDCK cell line and for antiviral activity against influenza A virus. Among the studied heterocycles 6,8-difluoro-2-(4-(trifluoromethyl)phenyl)chroman-4-one (IC50 = 6 µM, SI = 150) exhibited the greatest activity against influenza A/Puerto Rico/8/34 (H1N1) virus. Moreover, this compound appeared active against phylogenetically distinct influenza viruses, A(H5N2) and influenza B (SI's of 53 and 42, correspondingly). The data obtained suggest that the fluorinated derivatives of 2-arylchroman-4-ones are prospective scaffolds for further development of potent anti-influenza antivirals.

14.
Mikrochim Acta ; 190(11): 440, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845542

RESUMEN

An electrochemical biosensor is reported for controlling CRISPR/Cas12a activity through the utilization of entropy-driven reactions, alongside the construction of a highly sensitive biosensor for B-type natriuretic peptide (BNP) detection. In the biosensor, entropy-driven reactions are employed to regulate the activity of CRISPR/Cas12a - a gene editing tool - capable of nonspecific cleavage of single-stranded DNA (ssDNA). The biosensor architecture encompasses an electrode that is modified with ssDNA probes designed to hybridize with target BNP aptamers. These aptamers, furnished with labeled ssDNA triggers, facilitate the activation of CRISPR/Cas12a through interaction with its guide RNA. Upon the presence of BNP, it associates with the aptamers, subsequently liberating the triggers that instigate the entropy-driven reactions. As a consequence of these reactions, more stable duplexes emerge between the triggers and guide RNA, thereby activating CRISPR/Cas12a. The activated CRISPR/Cas12a subsequently executes cleavage of ssDNA probes residing on the electrode surface, culminating in the generation of an electrochemical signal directly (the calibration plots of differential pulse voltammetric detection were acquired at a working potential of 0.2 V (vs. ref. electrode)) proportional to the BNP concentration. Validation of the biosensor's performance is undertaken, wherein BNP detection is demonstrated in both buffer and human serum samples. Evident in the findings is the biosensor's discernible sensitivity and specificity for BNP detection, exemplified by a detection limit of 13.53 fM and a lack of interference originating from other cardiac biomarkers, respectively. Furthermore, the biosensor's potential to discriminate between healthy individuals and those afflicted by heart failure, predicated on distinctive BNP levels, is illustrated.


Asunto(s)
Sistemas CRISPR-Cas , ADN de Cadena Simple , Humanos , Entropía , Calibración , Oligonucleótidos , Biomarcadores , ARN
15.
Mar Pollut Bull ; 195: 115470, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37677977

RESUMEN

This study analysed marine debris monitoring data for Shandong from 2014 to 2022 to obtain a better understanding of marine debris stocking off-shore Shandong in order to reduce marine debris pollution and improving the ecological environment of ocean. The results indicated that the abundance of coastal marine debris was 45,832 items/km2 (1118.5 kg/km2); the abundance of small/medium sized floating marine debris was 8976 items/km2 (1.38 kg/km2); and the abundance of large floating marine debris was 35 items/km2; the abundance of seafloor debris was 104 item/km2 (0.22 kg/km2). Compared with the nationwide abundance of marine debris, the quantity density of floating marine debris in Shandong was higher; the abundance of coastal marine debris and quality density of floating marine debris were lower. The majority of the Shandong marine debris was small/medium plastic, mostly from human activities. And we found no significant correlation between precipitation and the abundance of marine debris by statistical analysis.


Asunto(s)
Plásticos , Residuos , Humanos , Residuos/análisis , Monitoreo del Ambiente/métodos , Contaminación del Agua/análisis , Ambiente
16.
Foods ; 12(17)2023 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-37685150

RESUMEN

Monascus, a key player in fermented food production, is known for generating Monascus pigments (MPs) and monacolin K (MK), possessing bioactive properties. However, the limited stability of MPs and mycotoxin citrinin (CTN) constrain the Monascus industry. Extremolytes like ectoine, derived from bacteria, exhibit cytoprotective potential. Here, we investigated the impact of ectoine on Monascus purpureus ATCC 16365, emphasizing development and secondary metabolism. Exogenous 5 mM ectoine supplementation substantially increased the yields of MPs and MK (105%-150%) and reduced CTN production. Ectoine influenced mycelial growth, spore development, and gene expression in Monascus. Remarkably, ectoine biosynthesis was achieved in Monascus, showing comparable effects to exogenous addition. Notably, endogenous ectoine effectively enhanced the stability of MPs under diverse stress conditions. Our findings propose an innovative strategy for augmenting the production and stability of bioactive compounds while reducing CTN levels, advancing the Monascus industry.

17.
Basic Clin Pharmacol Toxicol ; 133(5): 592-602, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37635270

RESUMEN

Drugs for acute postoperative pain and breakthrough cancer pain are still urgent in clinical. LPM3480392 is a G-protein-biased ligand at the µ-opioid receptor and showed potent analgesia in nonclinical studies. Two phase I studies of LPM3480392 were conducted in healthy Chinese male volunteers to explore its tolerability, pharmacokinetics and pharmacodynamics under single ascending doses (Study I 0.1-3.0 mg, 30 min) and different infusion times (Study II, 0.6-1.0 mg, 2-15 min). There was one serious adverse event (AE) observed in Study II, and the rest AEs were mild or moderate in severity and resolved by the end of the study. Plasma LPM3480392 maximum concentration (Cmax ) (under lower infusion rate) and area under the plasma concentration-time curve (AUCs) were generally increased with dose. Moreover, LPM3480392 at a dose of 0.6 mg under a 2 min infusion rate elicited effective analgesia as the peak effect within 10-30 min, which was measured by cold pain test and pupillometry. These findings suggest that LPM3480392 could be a potential treatment for acute pain management.

18.
Environ Sci Pollut Res Int ; 30(45): 100959-100978, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37642908

RESUMEN

Several countries have weakened the carbon emission objectives to immediately revive the economy in the post-COVID-19 era. Therefore, it is a challenge worth addressing to readjust the economic development and carbon emissions after the COVID-19 pandemic. From the perspective of China's carbon emissions, this study shapes a multi-objective dynamic optimization model based on the material capital input and R&D support aspects. The proposed model imitates China's economic development, energy consumption, and carbon dioxide (CO2) emissions. The model provides theoretical suggestion for the government to revive economic development and reduce carbon emissions. In addition, this research paper compares the evolutionary path of carbon peak under the two scenarios. The first scenario requires maintaining the pre-epidemic development state and pace of carbon emission reduction, referred to as the baseline scenario (BS). The second scenario is termed the optimal scenario (OS) based on the model calculation. The study findings exhibit that China is not able to accomplish the 2030 CO2 emission peak objective, under the BS. However, China under the OS shall expectedly accomplish the 2030 carbon peak objective ahead of schedule, while the peak CO2 emissions shall be around 11.28 billion tons. Reportedly, at least 788 million tons of CO2 reduction contrasted with the BS. Furthermore, there is an 80.35% decline in energy intensity as compared to 2005. Consequently, the study results contribute theoretical guidance for the "green recovery" of China's economy and the adjustment of carbon emission reduction's path after the COVID-19 epidemic. Consistent with this, the research method also contributes to the theoretical research on carbon emissions at the national level while extending a new research perspective for the economic and environmental fields.

19.
Acta Pharmacol Sin ; 44(12): 2388-2403, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37580494

RESUMEN

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, which has yet no curable medication. Neuroinflammation and mitochondrial dysfunction are tightly linked to DPN pathology. G-protein-coupled receptor 40 (GPR40) is predominantly expressed in pancreatic ß-cells, but also in spinal dorsal horn and dorsal root ganglion (DRG) neurons, regulating neuropathic pain. We previously have reported that vincamine (Vin), a monoterpenoid indole alkaloid extracted from Madagascar periwinkle, is a GPR40 agonist. In this study, we evaluated the therapeutic potential of Vin in ameliorating the DPN-like pathology in diabetic mice. Both STZ-induced type 1 (T1DM) and db/db type 2 diabetic (T2DM) mice were used to establish late-stage DPN model (DPN mice), which were administered Vin (30 mg·kg-1·d-1, i.p.) for 4 weeks. We showed that Vin administration did not lower blood glucose levels, but significantly ameliorated neurological dysfunctions in DPN mice. Vin administration improved the blood flow velocities and blood perfusion areas of foot pads and sciatic nerve tissues in DPN mice. We demonstrated that Vin administration protected against sciatic nerve myelin sheath injury and ameliorated foot skin intraepidermal nerve fiber (IENF) density impairment in DPN mice. Moreover, Vin suppressed NLRP3 inflammasome activation through either ß-Arrestin2 or ß-Arrestin2/IκBα/NF-κB signaling, improved mitochondrial dysfunction through CaMKKß/AMPK/SIRT1/PGC-1α signaling and alleviated oxidative stress through Nrf2 signaling in the sciatic nerve tissues of DPN mice and LPS/ATP-treated RSC96 cells. All the above-mentioned beneficial effects of Vin were abolished by GPR40-specific knockdown in dorsal root ganglia and sciatic nerve tissues. Together, these results support that pharmacological activation of GPR40 as a promising therapeutic strategy for DPN and highlight the potential of Vin in the treatment of this disease.


Asunto(s)
Diabetes Mellitus Experimental , Neuropatías Diabéticas , Vincamina , Animales , Ratones , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/patología , Alcaloides Indólicos/química , Alcaloides Indólicos/farmacología , Monoterpenos/química , Monoterpenos/farmacología , Receptores Acoplados a Proteínas G , Nervio Ciático/patología , Transducción de Señal , Vincamina/farmacología , Vincamina/uso terapéutico
20.
Clin Transl Sci ; 16(10): 1972-1981, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37537949

RESUMEN

Ciprofol (also known as HSK3486) is a promising intravenous anesthetic candidate derived from propofol and independently developed by Haisco Pharmaceutical Group Co., Ltd. (Chengdu, China). Compared with propofol, ciprofol has the potential to reduce the dose required and the associated risks. Ciprofol is extensively metabolized in vivo, and its interaction with other concurrently administered drugs during clinical application is worthy of attention. Therefore, an open-label, two-stage sequential study was performed in healthy subjects who received either a single administration of ciprofol injection or ciprofol injection after oral administration of sodium divalproex. The aim of the study was to evaluate the effects of sodium divalproex on ciprofol with respect to pharmacokinetics, pharmacodynamics, and safety, thus providing a basis for the rational clinical use of ciprofol and sodium divalproex.


Asunto(s)
Propofol , Ácido Valproico , Humanos , Interacciones Farmacológicas , Pueblos del Este de Asia , Voluntarios Sanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...